from pathlib import Path
from typing import List
import numpy as np
import torch
import gymnasium as gym
from splendor.Splendor.features import extract_metrics_with_cards
from splendor.Splendor.gym.envs.utils import (
create_action_mapping,
create_legal_actions_mask,
)
from splendor.Splendor.splendor_model import SplendorState, SplendorGameRule
from splendor.Splendor.types import ActionType
from splendor.agents.our_agents.ppo.ppo_agent_base import PPOAgentBase
from splendor.agents.our_agents.ppo.ppo_base import PPOBase
from splendor.agents.our_agents.ppo.utils import load_saved_model
from .network import PPOSelfAttention
DEFAULT_SAVED_PPO_SELF_ATTENTION_PATH = Path(__file__).parent / "ppo_model.pth"
[docs]
class PPOSelfAttentionAgent(PPOAgentBase):
[docs]
def SelectAction(
self,
actions: List[ActionType],
game_state: SplendorState,
game_rule: SplendorGameRule,
) -> ActionType:
"""
select an action to play from the given actions.
"""
with torch.no_grad():
state: np.array = extract_metrics_with_cards(game_state, self.id).astype(
np.float32
)
state_tesnor: torch.Tensor = (
torch.from_numpy(state).double().unsqueeze(0).to(self.device)
)
action_mask = (
torch.from_numpy(
create_legal_actions_mask(actions, game_state, self.id)
)
.double()
.to(self.device)
)
action_pred, _ = self.net(state_tesnor, action_mask)
chosen_action = action_pred.argmax()
mapping = create_action_mapping(actions, game_state, self.id)
return mapping[chosen_action.item()]
[docs]
def load(self) -> PPOBase:
"""
load the weights of the network.
"""
return load_saved_model(DEFAULT_SAVED_PPO_SELF_ATTENTION_PATH, PPOSelfAttention)
myAgent = PPOSelfAttentionAgent