splendor.agents.our_agents.ppo.ppo_rnn.gru package

Submodules

splendor.agents.our_agents.ppo.ppo_rnn.gru.constants module

Constants regarding PPO with GRU.

splendor.agents.our_agents.ppo.ppo_rnn.gru.network module

PPO with GRU (Gated Recurrent Unit) implementation.

class splendor.agents.our_agents.ppo.ppo_rnn.gru.network.PpoGru(input_dim: int, output_dim: int, hidden_layers_dims: list[int] | None = None, dropout: float = 0.2, hidden_state_dim: int = 64, recurrent_layers_num: int = 1)[source]

Bases: RecurrentPPO

Implementation of PPO network architecture using a GRU.

forward(x: Float[Tensor, 'batch sequence features'] | Float[Tensor, 'batch features'] | Float[Tensor, 'features'], action_mask: Float[Tensor, 'batch actions'] | Float[Tensor, 'actions'], hidden_state: tuple[Float[Tensor, 'batch num_layers hidden_dim'], None] | tuple[Float[Tensor, 'num_layers hidden_dim'], None], *args, **kwargs) tuple[Float[Tensor, 'batch actions'], Float[Tensor, 'batch 1'], Float[Tensor, 'batch hidden_dim'], None][source]

Pass input through the network to gain predictions.

Parameters:
  • x – the input to the network. expected shape: one of the following: (features,) or (batch_size, features) or (batch_size, sequance_length, features).

  • action_mask – a binary masking tensor, 1’s signals a valid action and 0’s signals an invalid action. expected shape: (actions,) or (batch_size, actions). where actions are equal to len(ALL_ACTIONS) which comes from Engine.Splendor.gym.envs.actions

  • hidden_state – hidden state of the recurrent unit. expected shape: (batch_size, num_layers, hidden_state_dim) or (num_layers, hidden_state_dim).

Returns:

the actions probabilities, the value estimate and the next hidden state.

init_hidden_state(device: device) tuple[Float[Tensor, 'num_layers hidden_dim'], None][source]

return the initial hidden state to be used.

splendor.agents.our_agents.ppo.ppo_rnn.gru.ppo_agent module

Implementation for a PPO agent which uses GRU in his neural network.

class splendor.agents.our_agents.ppo.ppo_rnn.gru.ppo_agent.PpoGruAgent(_id: int, load_net: bool = True)[source]

Bases: PPOAgentBase

PPO agent with GRU.

SelectAction(actions: list[CollectAction | ReserveAction | BuyAction], game_state: SplendorState, game_rule: SplendorGameRule) CollectAction | ReserveAction | BuyAction[source]

select an action to play from the given actions.

load() PPOBase[source]

load the weights of the network.

load_policy(policy: Module) None[source]

Use a given policy as the agent’s network policy.

splendor.agents.our_agents.ppo.ppo_rnn.gru.ppo_agent.myAgent

alias of PpoGruAgent

Module contents